亚洲国产精品久久久久,国产大片免费在线观看,亚洲成在人线久久综合,成人免费网站视频www

您現在所在的位置:首頁 > 試題中心 > 同等學力模擬題 > 綜合 >

    同等學力沖刺計算機綜合數學考前精練

      同等學力沖刺計算機綜合數學考前精練

      一、形式化下列語句

      1. 有的實數不是有理數,但所有的有理數都是實數。

      2. 對于任意實數都存在比它大的實數 .

      3. 若那套房子有三室一廳,并且居住面積在90平米以上,老王就要那套房子。

      4. 每位父親都喜歡自己的孩子。

      二、填空

      1. 設p:1+1=5,q:明天是陰天,則命題"只要1+1=5,那么明天是陰天"可符號化為_____________,其真值是________.

      2. 在公式(  z)(P(z)→Q(x,z))∧(  z)R(x,z)中,  z的轄域是___________________, z的轄域是__________________.

      3. 設R為非空集合A上的二元關系,如果R具有自反性。___________.__________則稱R為A上的一個偏序關系。

      4. 設x={1,3,5,9,15,45},R是x上的整除關系,則R是x上的偏序,其最大元是___________,極小元是_________.

      5. 給定命題公式(P∨Q)→R,該公式在聯接詞集合{  ,→}中的形式為__________,在聯接詞集合{  ,∧}中的形式為__________ .

      6. 設 , 中可定義_______個函數,其中有_________個滿射函數;

      可定義_______個函數,其中有_________個單射函數。

      7. 設x={1,3,5,9,15,45},R是x上的整除關系,則R是x上的偏序,其最大元是_________,極小元是______.

      8. 6名志愿者分配到5個西部學校支教,每個學校至少1人,共有_____種不同的分配方式。

      三、判斷下列推理式及集合。關系運算的正確性

      1. (P→Q) (P→R)   P →(Q  R) (   )

      2. (P Q)→R  (P→R)  (Q→R) (   )

      3. 一個關系可以:既不滿足自反性,也不滿足非自反性。(   )

      4. 一個關系可以:既不滿足對稱性,也不滿足反對稱性。(   )

      5. 一個關系可以:既滿足對稱性,同時也滿足反對稱性。(   )

      四、計算和證明

      1. 設個體域D={2,3,6},F(x):x≤3,G(x):x>5,消去公式 x(F(x)∧ yG(y))中的量詞,并討論其真值。

      2. 用等值演算法求公式 (p→q)→(p→q)的主合取范式。

      3. 設A=  ,(1)求P(A);(2)寫出P(A)上的包含關系 .

      4. 設  ,從A到B不同的二元關系有多少個? 又有多少種不同的函數?

      5. 設 ,在A×A上定義關系R:如果a+d=b+c, 則<a, b>R<c, d>.(1)證明R是等價關系。(2)求[<3,6>]R .

      6. 設 ,R是集合A上的整除關系: R={<x,y>| x整除y }.(1)證明R是偏序關系; (2)畫出相應的哈斯圖。

      7. 設A={a,b,c},求A上所有等價關系。

      8. 所有的主持人都很有風度。李明是個學生并且是個節目主持人。因此有些學生很有風度。請用謂詞邏輯中的推理理論證明上述推理。(個體域是人)

      9. 求  的主析取范式。

      10. 有向圖D=<V,E>如圖所示

      1)D中有多少條不同的初級回路;

      2)求v1到v4的短程線與距離;

      3)判斷D是哪一類連通圖。

      11. 求由2個0.3個2和3個5構成的八位數共有多少個?

      12. 一棵無向樹T中有ni個頂點的度數為i, i=1,2,3,…,k,其余頂點都是葉子,試計算T中的葉子數。

      13. 證明題構造下面推理的證明:

      前提:

      .結論

    ?